A general extension theorem for cohomology classes on non reduced analytic subspaces

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chern Classes in Deligne Cohomology for Coherent Analytic Sheaves

In this article, we construct Chern classes in rational Deligne cohomology for coherent sheaves on a smooth compact complex manifold. We prove that these classes satisfy the functoriality property under pullbacks, the Whitney formula and the Grothendieck-Riemann-Roch theorem for an immersion. This answers the question of proving that if F is a coherent sheaf of rank i on X, the topological Cher...

متن کامل

A General Version of the Hartogs Extension Theorem for Separately Holomorphic Mappings between Complex Analytic Spaces

Using recent development in Poletsky theory of discs, we prove the following result: Let X, Y be two complex manifolds, let Z be a complex analytic space which possesses the Hartogs extension property, let A (resp. B) be a non locally pluripolar subset of X (resp. Y ). We show that every separately holomorphic mapping f : W := (A × Y ) ∪ (X × B) −→ Z extends to a holomorphic mapping f̂ on Ŵ := {...

متن کامل

On Sandwich theorems for certain classes of analytic functions

The purpose of this present paper is to derive some subordination and superordination results for certain analytic functions in the open unit disk. Relevant connections of the results, which are presented in the paper, with various known results are also considered.

متن کامل

Cohomology of Semi 1-coronae and Extension of Analytic Subsets

Contents 1. Introduction and notations 1 2. Remarks on the proofs of theorems in [12] 3 3. An isomorphism theorem for semi 1-coronae 5 3.1. Bump lemma: surjectivity of cohomology 6 3.2. Approximation 8 4. Extension of coherent sheaves and analytic subsets 13 References 15

متن کامل

A Construction of Rigid Analytic Cohomology Classes for Congruence Subgroups of SL3(Z)

We give a constructive proof, in the special case of GL3, of a theorem of Ash and Stevens which compares overconvergent cohomology to classical cohomology. Namely, we show that every ordinary classical Hecke-eigenclass can be lifted uniquely to a rigid analytic eigenclass. Our basic method builds on the ideas of M. Greenberg; we first form an arbitrary lift of the classical eigenclass to a dist...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Science China Mathematics

سال: 2017

ISSN: 1674-7283,1869-1862

DOI: 10.1007/s11425-017-9066-0